Nutrient and food group intakes and skeletal muscle index in the Japanese elderly: a cross-sectional analysis of the NHNS 2017


GBD 2015 DALYs and HALE Collaborators (2016) Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 16031658.


Dos Santos, L, Cyrino, ES, Antunes, M et al. (2017) Sarcopenia and physical independence in older adults: the independent and synergic role of muscle mass and muscle function. J Cachexia Sarcopenia Muscle 8, 245250.


Steffl, M, Bohannon, RW, Sontakova, L et al. (2017) Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin Interv Aging 12, 835845.


Akune, T, Muraki, S, Oka, H et al. (2014) Incidence of certified need of care in the long-term care insurance system and its risk factors in the elderly of Japanese population-based cohorts: the ROAD study. Geriatr Gerontol Int 14, 695701.


Cruz-Jentoft, AJ, Baeyens, JP, Bauer, JM et al. (2010) Sarcopenia: European consensus on definition and diagnosis. Age Ageing 39, 412423.


Houston, DK, Nicklas, BJ, Ding, JZ et al. (2008) Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 87, 150155.


Mitchell, CJ, Milan, AM, Mitchell, SM et al. (2017) The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men: a 10-wk randomized controlled trial. Am J Clin Nutr 106, 13751383.


Verreijen, AM, Engberink, MF, Houston, DK et al. (2019) Dietary protein intake is not associated with 5-y change in mid-thigh muscle cross-sectional area by computed tomography in older adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 109, 535543.


Yamada, Y, Nishizawa, M, Uchiyama, T et al. (2017) Developing and validating an age-independent equation using multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing a cutoff for Sarcopenia. Int J Environ Res Public Health 14, 809.


Baumgartner, R, Koehler, K, Gallagher, D et al. (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147, 755763.


Okada, E, Takahashi, K, Takimoto, H et al. (2013) Dietary patterns among Japanese adults: findings from the National Health and Nutrition Survey, 2012. Asia Pac J Clin Nutr 27, 11201130.


Council for Science and Technology, Ministry of Education, Culture, Sports, Science and Technology, the Government of Japan (2010) Standard Tables of Food Composition in Japan, 2010. Tokyo: Official Gazette Cooperation of Japan.


Dunnett, CW (1964) New tables for multiple comparisons with a control. Biometrics 20, 482491.


Tieland, M, Franssen, R, Dullemeijer, C et al. (2017) The impact of dietary protein or amino acid supplementation on muscle mass and strength in elderly people: individual participant data and meta-analysis of RCT’s. J Nutr Health Aging 21, 9941001.


Liao, CD, Tsauo, JY, Wu, YT et al. (2017) Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis. Am J Clin Nutr 106, 10781091.


Visser, M, Deeg, DJH & Lips, P (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (Sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88, 57665772.


Wicherts, IS, van Schoor, NM, Boeke, AJP et al. (2007) Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92, 20582065.


Toffanello, ED, Perissinotto, E, Sergi, G et al. (2012) Vitamin D and physical performance in elderly subjects: The Pro.V.A Study. PLoS ONE 7, e34950.


Tieland, M, Brouwer-Brolsma, EM, Nienaber-Rousseau, C et al. (2013) Low vitamin D status is associated with reduced muscle mass and impaired physical performance in frail elderly people. Eur J Clin Nutr 67, 10501055.


Houston, DK, Cesari, M, Ferrucci, L et al. (2007) Association between vitamin D status and physical performance: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 62, 440446.


Annweiler, C, Henni, S, Walrand, S et al. (2017) Vitamin D and walking speed in older adults: systematic review and meta-analysis. Maturitas 106, 825.


Beaudart, C, Buckinx, F, Rabenda, V et al. (2014) The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 99, 43364345.


Rondanelli, M, Klersy, C, Terracol, G et al. (2016) Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr 103, 830840.


Verlaan, S, Aspray, TJ, Bauer, JM et al. (2017) Nutritional status, body composition, and quality of life in community dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr 36, 267274.


Yokoyama, Y, Nishi, M, Murayama, H et al. (2016) Association of dietary variety with body composition and physical function in community-dwelling elderly Japanese. J Nutr Health Aging 20, 691696.


Kim, J, Lee, Y, Kye, S et al. (2015) Association between healthy diet and exercise and greater muscle mass in older adults. J Am Geriatr Soc 63, 886892.


Rondanelli, M, Perna, S, Faliva, MA et al. (2015) Novel insights on intake of meat and prevention of sarcopenia: all reasons for an adequate consumption. Nutr Hosp 32, 21362143.


Candow, DG (2011) Sarcopenia: current theories and the potential beneficial effect of creatine application strategies. Biogerontology 12, 273281.


Paddon-Jones, D, Short, KR, Campbell, WW et al. (2008) Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 87, 1562S1566S.


Ceglia, L & Harris, SS (2013) Vitamin D and its role in skeletal muscle. Calcif Tissue Int 92, 151162.


Ceglia, L (2009) Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care 12, 628633.


Ceglia, L, Niramitmahapanya, S, Morais, MD et al. (2013) A randomized study on the effect of vitamin D-3 supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab 98, E1927E1935.


Cruz-Jentoft, AJ, Bahat, G, Bauer, J et al. (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48, 1631.


Leave a Reply

Your email address will not be published. Required fields are marked *